Windenergie

Bei der Windenergie handelt es sich um die kinetische Energie der bewegten Luftmassen der Atmosphäre. Sie ist eine indirekte Form der Sonnenenergie und zählt deshalb zu den erneuerbaren Energien. Die Windenergie-Nutzung ist die älteste Form, Energie aus der Umwelt zu schöpfen, und war bereits im Altertum bekannt.

Entstehung der Windenergie

Die ungleichmäßige Einstrahlung der Sonnenenergie auf die Erdoberfläche bewirkt eine unterschiedliche Erwärmung der Atmosphäre, der Wasser- und der Landmassen. Dann ist eine Seite der Erde, die Nachtseite, der Sonne abgewandt, zudem ist die solare Einstrahlung in Äquatornähe größer als an den Polen. Schon durch die hierbei entstehenden Temperatur- und damit auch Druckunterschiede geraten die Luftmassen zwischen der Zone um den Äquator und den Polen als auch zwischen der Tag- und der Nachtseite der Erde in Bewegung. Die Rotation der Erde trägt ebenfalls zur Verwirbelung der Luftmassen bei, und die Schiefstellung der Rotationsachse der Erde zur Ebene, die die Erdbahn durch das Umkreisen der Sonne bildet, (ekliptikale Ebene) führt zu jahreszeitlichen Luftströmungen.

Es entwickeln sich Hoch- und Tiefdruckgebiete. Da die Erde sich dreht, sind die vom Hoch- in ein Tiefdruckgebiet fließenden Luftmassen dem Einfluss der aus der Rotation resultierenden Corioliskraft ausgesetzt; sie strömen deshalb nicht geradlinig zum Ziel. Vielmehr bilden sich auf der Nord- und Südhalbkugel Wirbel mit jeweils anderer Drehrichtung. Auf der Nordhalbkugel strömen die Luftmassen (aus dem Weltall gesehen) gegen den Uhrzeigersinn in ein Tiefdruckgebiet hinein und mit dem Uhrzeigersinn aus einem Hochdruckgebiet heraus. Auf der Südhalbkugel sind die Orientierungen umgekehrt.

Zu diesen globalen Störungen kommen lokale Einflüsse hinzu, die Winde entstehen lassen. Aufgrund der verschiedenen Wärmekapazitäten von Wasser und Land erwärmt sich das Land tagsüber schneller als das Wasser, und es weht tagsüber durch die entstehenden Druckunterschiede ein Wind vom Wasser auf das Land. Nachts kühlen die Landmassen schneller ab als das Wasser, und der Effekt kehrt sich um. Zusätzlich kann sich der Wind über dem Wasser ungebremst entwickeln, so dass es besonders in Küstengebieten zu regelmäßigen und starken Winden kommt. Auch durch Bergformationen und andere lokale Ausprägungen ( z.B. Städte), kann es zu Windströmungen kommen, die häufig durch Verengungen an Hindernissen (Düsen- oder Kapeffekte) verstärkt werden.

Die Stärke des Windes hängt in den unteren Luftschichten ganz wesentlich von den dort vorhandenen Landschaftselementen ab. Wasser, Wiese, Wald oder Bebauung werden als verschiedene Rauigkeiten abgebildet, die die Reibung der Luft an der Erdoberfläche beschreibt. Dieser Effekt führt zu einer Verringerung der Windgeschwindigkeit, dies in Abhängigkeit von der Höhe über dem Boden.

Winde und Windsysteme

Weltweit gibt es viele verschiedene Winde und Windsysteme, wie zum Beispiel den Passat, Monsun, Föhn, den Mistral, die Bora oder den Scirocco.

Bei einer Betrachtung der vertikalen Unterteilung der Atmosphäre ist alleine deren untere Schicht, die Troposphäre, für eine Nutzung der Windenergie von Interesse. Von besonderer Wichtigkeit ist die Höhe, in welcher der Übergang von der Prandtl-Schicht (bis 20-60 m) zur Ekman-Schicht verläuft. Diese zwei Schichten unterscheiden sich darin, wie sich die Häufigkeitsverteilung der Windgeschwindigkeit verändert. In der Ekmanschicht ist der Einfluss der Rauigkeit praktisch nicht mehr vorhanden, und so ist die Windgeschwindigkeit dort gleichmäßiger und weniger durch Turbulenzen geprägt.

Auswirkungen des Windes auf die Umwelt

In besonderen Situationen wird die Windenergie so verstärkt, dass es zu Stürmen kommt, die in ihrer Extremform zu großen Zerstörungen an der Natur und den von Menschen geschaffenen Bauwerken führen. Oft sind auch direkt oder indirekt Menschen betroffen. Diese Naturkatastrophen treten in bestimmten Gebieten der Erde jahreszeitlich bedingt und, in Kombination mit anderen Wetterfaktoren, regelmäßig auf, kommen aber in Einzelfällen auch an anderen Orten vor.

Physik der Windenergie

Windenergie ist kinetische Energie der Luftteilchen, welche sich mit der Geschwindigkeit v bewegen. Eine Kreisfläche mit Radius r, die senkrecht zur Windrichtung steht, wird dabei in der Zeit t von folgender Masse durchströmt:

m = \rho V = \rho \cdot {A v t} = \rho \cdot {\pi r^2 v t}

Somit ergibt sich die kinetische Energie des Windes zu:

E_{kin} = {1 \over 2} m \cdot v^2 = {\pi \over 2} \rho r^2 t \cdot v^3

P_{Wind} = {E_{kin} \over t} = {\pi \over 2} \rho r^2 \cdot v^3

Hierbei ist bemerkenswert, dass die Windleistung mit der dritten Potenz der Windgeschwindigkeit zunimmt. Somit ist diese einer der bestimmenden Faktoren bei der technischen Nutzung der Windenergie.

Die Leistung des Windes, welche etwa ein Windgenerator als elektrische Leistung nutzen kann, ist erheblich geringer, weil die Geschwindigkeit in einem Windrad nicht auf „0“ abgebremst werden kann. Diese Tatsache wird mit dem Betzschen Faktor berücksichtigt.

Dieser Betzsche Faktor ist kein Wirkungsgrad, sondern ein sogenannter „Erntefaktor“, da die nicht geerntete Windenergie weitgehend erhalten bleibt, einerseits in der oben genannten Restbewegungsenergie des durch das Windrad hindurchtretenden Windes, andererseits, weil der Wind dem Windrad ausweicht und dieses ungebremst umströmt. Dieser Teil macht im genannten Erntemaximum ein Drittel der gesamten Windleistung aus, während der Energieverlust durch die Restenergie der durch das Windrad getretenen Luftmenge nur ca. 12% ausmacht. Insgesamt beträgt der Erntegrad somit ca. 67 von 88%, das sind ca. 59%. In Windparks versucht man, die „Schattenwirkung“ eines Windrades zu mindern, indem man die Luft weniger abbremst. Am Erntegrad ändert dies relativ wenig im Vergleich zur Minderung des Windschattens. Bei einer Abbremsung des Windes auf 50% beträgt die Restenergie noch 25%, während sich die ausweichende Luftmenge auf 25% reduziert. Der Erntegrad sinkt auf 56,25% bei deutlich verringerter Belastung des Windrades. Bei einer Abbremsung auf 2/3 sind es immerhin noch 46,3%.

Die im Wind enthaltene Strömungsenergie kann theoretisch zu maximal 59,3% entnommen werden. Der Wert, der die dem Wind entnommene Leistung ins Verhältnis mit der im Wind enthaltenen Leistung setzt, wird Betz’scher Leistungsbeiwert (cp,Betz) genannt und wurde von Albert Betz im Jahre 1926 ermittelt (siehe Betzsches Gesetz). Anschaulich und prinzipiell ist dieser Sachverhalt auch zu erklären: Wenn der Windströmung Leistung entnommen wird, verlangsamt sich der Wind. Da jedoch der Massenstrom gleich bleiben muss, weitet sich bei einer frei angeströmten Windenergieanlage der Wind auf, da eben trotz der langsameren Geschwindigkeit hinter der Anlage die gleiche Menge Luft abtransportiert werden muss. Aus eben diesem Grund ist die komplette Umwandlung der Windenergie in Rotationsenergie mit einer Windenergieanlage nicht möglich: Dafür müssten die Luftmassen hinter der Windenergieanlage ruhen, könnten also nicht abtransportiert werden.

Nutzung der Windenergie

Die Windenergie wird seit Jahrhunderten vom Menschen für seine Zwecke genutzt. Es kam zum einen zur Nutzung des Windes zur Fortbewegung mit Segelschiffen oder Ballons. Zum anderen wurde die Windenergie zur Verrichtung mechanischer Arbeit mit Hilfe von Windmühlen und Wasserpumpen genutzt.

Nach der Entdeckung der Elektrizität und der Erfindung des Generators lag auch der Gedanke der Nutzung der Windenergie zur Stromerzeugung nahe. Anfänglich wurden die Konzepte der Windmühlen nur abgewandelt und statt der Umsetzung der kinetischen Energie des Windes in mechanische Energie wurde über einen Generator elektrische Energie erzeugt. Mit der Weiterentwicklung der Strömungsmechanik wurden auch die Aufbauten und Flügelformen spezialisierter, und man spricht heute von Windenergieanlagen (WEA). Seit den Ölkrisen in den 1970er Jahren wird weltweit verstärkt nach Alternativen zur Energieerzeugung geforscht und damit wurde auch die Entwicklung moderner Windenergieanlagen vorangetrieben. Der Ausdruck Windmühle ist für stromerzeugende Anlagen nicht korrekt, da sie kein Mahlwerk besitzen.

Weitere Anwendungen

* Antrieb von Segelschiffen durch den Wind gehört neben Zugtieren zu den ältesten Antriebssystemen von Verkehrsmitteln für Menschen. Im Jahre 2007 soll das erste Containerschiff mit einem Lenkdrachen der Firma Skysails ausgerüstet werden. Das Windsurfen, Kitesailing und Strandsegeln beruhen auf dem gleichen Prinzip.
* Ballons
* Drachen, inklusive verschiedener Sportarten wie Kitesailing, Kite-Surfen, Kitebuggyfahren etc.
* Segelflugzeuge nutzen die Thermik, die nur indirekt mit den Windströmungen zusammenhängt.

Stromerzeugung aus Windenergie

Windenergieanlagen können in allen Klimazonen, auf See und in allen Landformen (Küste, Binnenland, Gebirge) zur Gewinnung elektrischen Stroms eingesetzt werden. Aufgrund der Unstetigkeit des Windes kann die mit Windenergieanlagen gewonnene elektrische Energie nur im Verbund mit anderen Energiequellen oder Speichern für eine kontinuierliche Energiebereitstellung genutzt werden. (Siehe auch Regelenergie) Durch Prognose der Einspeisung und Austausch in und zwischen den deutschen Übertragungsnetzen (Regelzonen) kann die schwankende Stromerzeugung im Zusammenspiel mit anderen Kraftwerken wie die normalen Verbrauchsschwankungen ausgeglichen werden. Die Verknüpfung der Regelzonen und die Gesamtreserve dauerverfügbarer Energiequellen definieren daher zukünftig den Gesamtanteil der Windenergie an der Stromerzeugung. Für Deutschland geht man derzeit von 20 bis 25% maximalem Anteil aus. Eine andere Möglichkeit, die Schwankungen auszugleichen, besteht in der Nutzung von Pumpspeicherkraftwerken, Druckluftspeicherkraftwerken, Wasserstoffelektrolyse- und Verbrennung und Schwungradspeichern (siehe norwegisches Modellprojekt auf der Insel Utsira). Die Kombination dieser Techniken mit dem sogenannten Demand Side Management, also der zeitweiligen Abschaltung oder dem verzögerten Betrieb nicht zwingend notwendiger Verbraucher, ist ebenfalls eine Möglichkeit, die Schwankungen bei der Windenergieerzeugung auszugleichen.

Andererseits weht der Wind aufgrund der Sonneneinstrahlung tagsüber meist stärker als nachts und passt sich somit auf natürliche Weise dem am Tag höheren Energiebedarf an. In ähnlicher Weise ist oft die Erzeugung im Winter größer als im Sommer, was ebenfalls günstig ist.

Die Höhe der vorzuhaltenden Reserveleistung (Regelenergie) hängt auch erheblich von der Vorhersagegenauigkeit des Windes, der Regelungsfähigkeit des Netzes sowie dem zeitlichen Verlauf des Stromverbrauchs ab. Eine deutliche Verminderung des Bedarfs an Regelenergie entsteht durch Kombination von Windenergieanlagen an verschiedenen Standorten, da sich die Schwankungen der dortigen Windgeschwindigkeiten teilweise gegenseitig ausmitteln. (Weitere Informationen im Artikel Windenergieanlage.)

Ältere drehzahlstarre Windenergieanlagen mit Asynchrongeneratoren haben z. T. Eigenschaften, die bei einem starken Ausbau Probleme im Netzbetrieb bereiten können; dies betrifft vor allem den sog. Blindstrom. Dem kann durch Blindstromkompensation abgeholfen werden; moderne drehzahlvariable Anlagen mit elektronischem Stromumrichter können den Blindstromanteil ohnehin nach den Anforderungen des Netzes beliebig einstellen und auch Spannungsschwankungen entgegenwirken, so dass sie sogar zur Netzstabilisierung beitragen können.

Umweltschützer argumentieren, Windenergie sei, wenn alle externen Kosten der Energieerzeugung (auch die Umweltschäden durch z. B. Schadstoffausstoß) einbezogen werden, neben der Wasserkraft eine der billigsten Energiequellen (Beispiel siehe [1]). Da die Messung externer Kosten und Nutzen jedoch nicht eindeutig möglich ist, kommen andere Studien zu anderen Ergebnissen (Beispiel siehe [2]). Moderne Windenergieanlagen besitzen eine kurze energetische Amortisationszeit von nur wenigen Monaten (siehe [3]).

Als lukrativ gelten Winde mit einer mittleren Geschwindigkeit von wenigstens 6,9 m/s in einer Höhe von 80 Metern über dem Erdboden. Sie werden als Winde der Klasse drei bezeichnet und sind an der Nordsee, der Südspitze Südamerikas, der australischen Insel Tasmanien und an den Großen Seen im Norden der USA üblich.

Förderungen der Windenergienutzung

Windenergie wird in vielen Ländern unabhängig von politischer Ausrichtung gefördert, beispielsweise durch Steuergutschriften (PTC in den USA), Quoten- oder Ausschreibungsmodelle (z. B. Großbritannien, Italien) oder Mindestpreissysteme (z. B. Deutschland, Spanien, Österreich, Frankreich, Portugal, Griechenland). Das Mindestpreissystem verbreitet sich immer mehr und erzielt im Mittel einen niedrigeren Strompreis bei höherer Installation an Leistung.

Windenergie muss in vielen Strommärkten mit zum Teil längst abgeschriebenen Kraftwerken konkurrieren; daneben ist die Technologie noch relativ jung. Die Verbesserungspotentiale werden erst durch die industrielle Forschung und Fertigung erschlossen. Daher wurde in Form des Erneuerbare-Energien-Gesetz (EEG) in Deutschland ein mit der Zeit sinkender Ausgleich zu den konventionellen Energielieferanten geschaffen, der es der jungen Branche erlaubt, sich zu entwickeln. Hierin werden Mindestvergütungen festgelegt, die von den Netzbetreibern an die Betreiber von Anlagen zur Stromerzeugung aus erneuerbaren Energien zu zahlen sind. Die Höhe der Mindestvergütung ist degressiv gestaltet, d. h. sie nimmt zukünftig ab. Außerdem vermindert die Inflation den Wert der Vergütung. Es handelt sich im Gegensatz zu einer Subvention (wie zum Beispiel der deutschen Steinkohle) nicht um eine Förderung aus der Steuerkasse, vielmehr werden die Abnehmer (Stromnetzbetreiber) zu einem etwas höheren Strompreis verpflichtet. Das Umlagevolumen der EEG-Vergütung darf dabei nicht einem Fördervolumen bzw. Mehrkosten gleichgesetzt werden. Vielmehr muss die EEG-Umlage mit vermiedenen Erzeugungs-, Vertriebs- und Handelskosten sowie die anteilig vermiedenen Netzkosten verrechnet werden. Hierdurch ergibt sich derzeit eine Förderhöhe, die etwa der Hälfte der EEG-Umlage entspricht. Die Mehrkosten für alle Verbraucher liegen aktuell je nach Literaturquelle tatsächlich bei etwa 0,2 – 0,6 ct/kWh bei einem Marktanteil von etwa 6%. Zum Vergleich werden von den Stromversorgungsunternehmen gerne 2 – 3 ct/kWh hierfür beziffert.

Der allgemeine Subventionsvorwurf gegen die Windenergie bezieht sich in der Regel auf die EEG-Förderung. Dass es sich bei Transfers aus dem EEG um keine Beihilfen im Sinne des EG-Vertrages handelt, wurde vom Europäischen Gerichtshof (EuGH) bestätigt. Auch der Subventionsbegriff laut § 12 des Stabilitäts- und Wachstumsgesetzes wird vom EEG nicht erfüllt. Jedoch sind die ökonomischen Wirkungen des EEG und von Subventionen vergleichbar.

Subventionen, die den Betreibern von Windenergieanlagen aktuell gewährt werden, sind:

* Auf Antrag Befreiung von der Stromsteuer für Bezugsstrom (insgesamt bundesweit weniger als 100.000 € im Jahre 2004)
* Kreditverbilligungen der KfW-Bankengruppe. Günstige Kredite für Investitionen werden z. B. auch mittelständischen Betrieben oder Privathaushalten für Gebäudesanierungen gewährt. Auch Betreiber von Windenergianlagen können Mittel beantragen. Dies ist jedoch zeitaufwändig und die Rückzahlung unflexibel in der Tilgung, weshalb oft darauf verzichtet wird. Der Zinsvorteil dieser Kredite ist mit den Zinsen am freien Kapitalmarkt gegenzurechnen und als Subvention zu bewerten. Bei einem Zinsvorteil von 0,5 bis 1% ergibt sich für 2003 eine Subvention der Windenergie von schätzungsweise 18,5 bis 37 Millionen Euro.

Investitionskostenzuschüsse von Bund und Ländern für die Errichtung von Windenergieanlagen werden seit Ende der Neunzigerjahre nicht mehr gewährt. Steuerlich gibt es keine Sonderregelungen für den Betrieb von Windenergieanlagen, die von anderen beweglichen Wirtschaftsgütern abweichen.

Windkraftgegner halten neben der Landschaftszerstörung durch „Windspargel“ die bisher fehlende Fähigkeit zur Energiespeicherung und die höheren Kosten für Regelenergie und Ausbau der Stromverteilungsnetze diesen Berechnungen entgegen. Ein fairer Vergleich betreffend die Regelenergie erfordert jedoch oft nicht durchgeführte komplexe Überlegungen, die insbesondere auch den Regelenergiebedarf anderer Energieerzeugungsanlagen einbeziehen. Beispielsweise erfordert die gelegentlich nötige Schnellabschaltung eines großen Kernreaktors die Bereitstellung von ca. einem Gigawatt an Ersatzleistung innert weniger Minuten.

 

energie-visions.de © 2016 Frontier Theme